
Among Us: Modelling movement in Among Us
with epistemic logic

Group 19:
Barbera de Mol (s3374610)
Jeroen Muller (s2590182)
Max Valk (s3246922)

June 25, 2021

Background

One kind of reasoning about the game Among Us involves the way players move from room to room.
For example, consider a scenario where player c learns that b was killed in a specific room and tries
to figure out who could have been the killer. He might for example think as follows: “I was close
to player a while b was killed at the other side of the map. This means a cannot be the killer.” A
good player does not just consider the information that he observed directly, but also what can be
extrapolated from it by considering the rules of the game. For example, a might have been out of sight
of c for a short time, but c can use his knowledge of the map to deduce that there was insufficient
time for a to move all the way to the place where b was killed. In this case c should still remove a
from his list of suspects.

We can capture this kind of reasoning by constructing a Kripke model that describes what agents
know about where everyone is at any time. To keep things simple we will study a highly simplified
version of the game in which we only consider the way agents move from room to room. Movement
and observations will be described by using Dynamic Epistemic Logic action models [2] with post-
conditions[1]. This approach could in principle be extended to a more complex model, where we also
consider things like other types of actions and agent roles, although in that case the number of states
would probably become very large even when considering modest numbers of agents and rooms. In
what follows we will first describe the Kripke model and the action models used to update it. We will
then describe how the model was implemented in Python, describe two optimizations that are used
in the implementation, and show its application to a simple example. Our source code is available
on Github and can also be executed interactively using a web-based notebook on Binder without the
need to install any software.

Kripke model

Let A denote the set of agents and R the set of rooms. At any time, each agent is in one of a fixed
set of rooms. We describe the location of agents with the set of atomic propositions PM,R = {ar|a ∈
A, r ∈ R}, where ar denotes that a is in room r. The way agents can move from room to room is
described by the relation on the rooms, such that r1 r2 if room r2 can be reached from room r1
in one movement step. Since we will always allow agents to move in both directions between rooms
and to remain in the same room, the relation will be reflexive and symmetric.

1

When |A| = m, at any given time the knowledge in our model is described by a S5(m)-world (M, s),
where M = 〈S, π,R1, . . . , Rm〉 is a Kripke structure and the distinguished state s ∈ S describes the
real world. The valuation function π : S → (PM,R → {t, f}) assigns a truth value to all atomic
propositions in each state. Because agents are always in exactly one room, the valuation function
must satisfy the following constraint for every a ∈ A in order to describe a consistent state of the
game:

[π(s)(ai) = t] iff [π(s)(aj) = f](j 6= i)

Action models

The Kripke model is updated by executing an action model with preconditions and postconditions.
An action model describes a set of possible actions, of which one will be executed. The defini-
tions we use are similar to those given in [1], but the preconditions are restricted to being conjunc-
tions of possibly negated atomic propositions, which is sufficient for our prupose. Briefly, an action
model with postconditions is very similar to a Kripke structure and has the following structure:
M = 〈S, pre, pos, R1, . . . , Rm〉. Here S is the set of actions that are possible in the action model.
pre : S → L assigns a precondition sentence to each action (something like p1 ∧ p2 ∧ ¬p3), and
post : S → ({p1, . . . pj}, {¬q1, . . . ,¬qk}) assigns to each state a set of propositions that will become
true after the corresponding action is executed and a set of propositions that will become false. The
relations Rm relate states that are indistinguishable for agent m.

The result of executing an action (M, j) in action model (M, s) is the Kripke world (M⊗M, (s, j)).
We will not repeat the definition of the operation, but the states (s, j) of M ⊗M are those states in
the Caresian product S × S where (mathbbM, s) � pre(j), with the substitutions in the postcondition
carried out. Two states in the product model are related for agend a if the corresponding states and
actions are related for that agent in both the Kripke model and the action model (thus agents can
distinguish resulting states when they can distinguish either the previous state or the action).

In our simplified version of Among Us, every turn consists of all agents simulataneously taking a
movement step, followed by them simultaneously observing the state of the new room they are in. We
can neatly define this set of operations as the execution of a set of action models. We will define a
movement action model MOVa describing agent a taking one step, and an action model OBS for the
effect of all observations. The relation between the Kripke models of two consecutive time steps is
then as follows:

(Mt+1, st+1) = (Mt, st)⊗ (MOVa,mova,t)⊗ · · · ⊗ (MOVm,movm,t)⊗ (OBS, obst)

Single agent movement

The single agent movement action model MOVa contains one state for every connected pair of rooms
(r, s) ∈ . It has precondition pre(r, s) = ar, and postcondition post(r, s)({as}, {¬ar}) (so the only
change is the position of agent a). All states are distinguishable for a and indistinguishable for all
other agents, so Rx includes only the reflexive relations if x = a and is the full relation on the states
of MOVa for all other agents.

Observation

The observation action model contains one action for every possible distribution of agents over rooms,
so the total number of states is |R||A|. For the state for a distribution (ai, bj , . . .), the precondition
will be the conjunction ai ∧ bj ∧ . . . , so each action picks out states in the Kripke model that match
that distribution of agents. Two states in the observation action model are equivalent for agent a if
the set of agents in the room where a is is the same. The postconditions of the observation action

2

model is empty. Thus, applying this action model leaves the size of the Kripke model unchanged but
removes relations where agents can distinguish the corresponding states based on what they can see
in the room they are in.

Implementation

The Kripke models and action models were implemented from scratch in Python using the NetworkX

graph manipulation library[4]. As we only consider fairly simple sentences here, all logical sentences
are evaluated using the built-in set operations of Python. To be able to handle more complex sentences
(like higher-order knowledge) the Kripke models could be translated into mlsolver models like the
other part of our project, but for the sake of simplicity we did not pursue this.

Optimization 1: Removing irrelevant states

Because we only evaluate sentences that contain a single Ka-operator in the distinguished state s and
this operator only depends on the states that are reachable from s in one step, the ourcomes we report
do not depend on the states in the Kripke-model that are not related to s for any agent. We can
use this fact by removing all states that are not neighbours of s after every application of an action
model. It is easy to see that this simplification is safe as long as the preconditions and postconditions
in the action model don’t use the K-operator (which is currently not possible in our simulation). This
optimization can be enabled or disabled in the simulation, and was used during the generation of the
results below.

Optimization 2: Replacing nodes with their bisimulation class

After the execution of a sequence of action models, one state will be created for each sequence of
actions that is allowed by the preconditions. This means the number of states tends to grow as the
simulation proceeds. Many of these states can be removed by the first optimization, but an orthagonal
problem is the creation of states that are equivalent for the evaluation of all sentences. This type of
equivalence is called a bisimulation, and we can deal with it by replacing all states in the Kripke-model
with their bisimulation class. A full explanation is given in [3], in addition to an algorithm that can
be used to perform the optimization. We implemented this algorithm and saw a simplification of the
Kripke model in many cases. For example, when the simulation is started with two agent in the same
room that are then moved apart and back together, both agents know the full state of the game, but
the Kripke model will consist of a number of indistinguishable states referring to each other. The
application of the bisimulation algorithm correctly reduces these to a single state. In our example
below, this step was performed after the removal of irrelevant sates every time an action model was
executed. In the implementation of the bisimulation algorithm an existing recipe for partitioning sets
into equivalence classes based on a binary predicate was used [5] together with the graph algorithms
built into NetworX.

Example

For the example, we consider a game where two agents a and b are moving around in a map of four
room that are connected in a linear fashion (r1! r2! r3! r4). In the first time step, both agents
are in room 1. Every consecutive step, agent b moves one step to the right while agent a remains
in room 1. Becuase the Kripke models are not very informative to look at directly, we have at each
time step evaluated propositions of form ai,¬ai,Ka′ai,Ka′¬ai in the distinguished state s (the real
world) for every combination of a ∈ {a, b}, a′ ∈ {a, b}, i ∈ {1, 2, 3, 4}. The code includes a function for

3

automatically evaluating such a set of propositions and constructing a LATEXtable that can be used to
easily check the state of the Kripke model.

The results are shown in the tables below, where all propositions in the truth row should be read
as (Mt, st) � p, in the agent a row as (Mt, st) � Kap and in the agent b row as (Mt, st) � Kbp (so each
table cell shows propositions describing that room that are true or that are known to be true by that
agent).

t = 1 Room 1 Room 2 Room 3 Room 4

Truth a1, b1 ¬b2,¬a2 ¬b3,¬a3 ¬a4,¬b4
Agent a a1, b1 ¬b2,¬a2 ¬b3,¬a3 ¬a4,¬b4
Agent b a1, b1 ¬b2,¬a2 ¬b3,¬a3 ¬a4,¬b4

Initially, agent a and b can see each other, so both know where the other is, and consequently the
entire state of the game.

t = 2 Room 1 Room 2 Room 3 Room 4

Truth a1,¬b1 b2,¬a2 ¬b3,¬a3 ¬a4,¬b4
Agent a a1,¬b1 b2,¬a2 ¬b3,¬a3 ¬a4,¬b4
Agent b a1,¬b1 b2,¬a2 ¬b3,¬a3 ¬a4,¬b4

At time 2, b has moved one step to the right (as can be read from the truth row). After one step
of b, agent a knows that b must be in room 2 because he is no longer in room 1 and this is the only
room that was reachable in one step. Similarly, agent b sees that a is not in room 2. Because the only
possible actions for a were to move to room 2 or to stay in room 1, he knows a must still be in room
1. Consequently, both agents still know the valuation of all atomic propositions.

t = 3 Room 1 Room 2 Room 3 Room 4

Truth a1,¬b1 ¬b2,¬a2 b3,¬a3 ¬a4,¬b4
Agent a a1,¬b1 ¬a2 ¬a3 ¬a4,¬b4
Agent b ¬b1 ¬b2 b3,¬a3 ¬a4,¬b4

After another time step, a has no way to know if b stayed in room 2 or moved to room 3. Con-
sequently, all he knows about b is that he is not in room 1 (or he would be seen by a) or in room 4
(because that room cannot be reached from room 1 in two steps). Agent b also doesn’t know exactly
where a is anymore, but he does know a cannot be in room 3 or 4.

t = 4 Room 1 Room 2 Room 3 Room 4

Truth a1,¬b1 ¬b2,¬a2 ¬b3,¬a3 b4,¬a4
Agent a a1,¬b1 ¬a2 ¬a3 ¬a4
Agent b ¬b1 ¬b2 ¬b3 b4,¬a4

Finally, agent b moves to the last room. Both agents now only kow that the other is not in the same
room as they are.

References

[1] Mario Benevides and Isaque Lima. “Action Models with Postconditions”. In: Computacion y
Sistemas 21 (Sept. 2017), pp. 401–406. doi: 10.13053/CyS-21-3-2808.

[2] H. V. Ditmarsch, W. Hoek, and Barteld P. Kooi. “Dynamic Epistemic Logic”. In: 2007.

[3] Jan van Eijck. Lecture notes Logica voor AI: Bisimulations. https://staff.fnwi.uva.nl/d.j.
n.vaneijck2/courses/lai0506/LAI11.pdf. 2006.

4

https://doi.org/10.13053/CyS-21-3-2808
https://staff.fnwi.uva.nl/d.j.n.vaneijck2/courses/lai0506/LAI11.pdf
https://staff.fnwi.uva.nl/d.j.n.vaneijck2/courses/lai0506/LAI11.pdf

[4] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. “Exploring Network Structure, Dynamics,
and Function using NetworkX”. In: Proceedings of the 7th Python in Science Conference. Ed. by
Gaël Varoquaux, Travis Vaught, and Jarrod Millman. Pasadena, CA USA, 2008, pp. 11–15.

[5] John Reid. Equivalence partition (Python recipe). https://code.activestate.com/recipes/
499354-equivalence-partition/. 2007.

5

https://code.activestate.com/recipes/499354-equivalence-partition/
https://code.activestate.com/recipes/499354-equivalence-partition/

