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Abstract—In this paper, we present a system for isolating a
child’s heartbeat from an ECG signal that has the mother’s
heartbeat mixed in. Using several signal processing algorithms,
the data is filtered and modified for the linear regression. A
simple linear regression predicts the mother’s heartbeat, allowing
the system to predict the timing of the child’s heartbeat and
reconstruct the exact heartbeat.

I. INTRODUCTION

In healthcare, monitoring of heart rate signals can provide
insights to underlying conditions [6]. These signals are mea-
sured using Electrocardiogram Machines, or ECG’s. Moni-
toring the highly sensitive intrapartum stage of human fetal
development can indicate fatal fetal abnormalities and give
physicians the potential to perform corrective procedures [3].

Fig. 1: Main Morphological Features in an ECG signal [8]

Non Invasive-fetal Electrocardiogram (NI-fECG) systems
take measurements from the maternal abdomen [5]. These
measurements are composed of mixtures of the fetal ECG
(fECG) signal, maternal ECG (mECG) signal and noise
(caused by e.g. uterine contractions). The mECG signal ampli-
tude is predominantly stronger than the fetus’ and both mECG
and fECG share the same frequency and time domains [2].
Separating these signals is the focus of this paper.

Advances in diagnosing fetal abnormalities such as hypoxia
are made possible by Morphological feature analysis, seen in
Figure 1, specifically focusing on ST segment analysis. By
measuring the ratio of T wave to QRS amplitude (T/QRS) it
is possible to recognise the physiological response caused by
hypoxia as an increase in the ST segment [1].

In order to differentiate between the fECG and mECG
signals to perform analysis on fECG signals we investigate
applying a linear regression to a dataset containing 5 mea-
surements taken from a pregnant mother. The measurements
are taken from the abdomen and thorax. The main goal here
is to isolate the desired data – the child’s heartbeat – out of
the abdomen signal.

Our expected result is to get the average child heartbeat.
As there are no quantitative success metrics to check whether
the result is correct, we expect to see a distinguishable QRS
structure for the fetus’ heartbeat.

A. Problem

The problem addressed in this paper is the weakness of the
fetal heartrate (fHR) with respect to the maternal heartrate
(mHR) in utero ECG measurement. In order to perform
Morphological Feature analysis on the continuous fetal heart
rate, we need to distinguish the fHR from the mixed abdominal
signal. In this case we treat the mHR from the thorax reading
as noise when evaluating the abdominal readings.

II. METHODS

A. Data Description

The data provided for this assignment was used. It contains
five signals, each with 20,000 samples: three thorax signals
and two abdomen signals (see Figure 2). As is clearly visible,
the abdomen signals are much weaker than the thorax signals.
The signals have a sampling frequency of 1000Hz, meaning
each signal spans 20s.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
5000

0

5000

10000 Abdomen signals

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [s]

5000

0

5000

10000 Thorax signals

Fig. 2: The raw signals in the dataset.
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B. Preprocessing

Before applying machine learning algorithms, the data needs
to be preprocessed. The steps outlined in algorithm 1 are used
to preprocess the data. Each step is further detailed in the
following subsections.

Algorithm 1: Preprocessing steps applied to each
signal.

input : An ECG signal of length 20000
output: A processed signal of length 20000
signal -= mean(signal);
signal /= std(signal);
filter(signal);
signal = analytic signal(data);

1) Signal Normalisation: The first preprocessing step is
to normalize the data. When measuring ECG signals, it is
possible that these are in a different amplitude range depending
on several factors. For example, the thorax signals have a
much higher amplitude because those sensors are located much
closer to the mother’s heart. It’s also possible that some signals
have a DC component. For this reason, we subtract the mean
from each signal, then divide them by their standard deviation.
This ensures each channel is centered and has a similar range
of values (see Figure 3).
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Fig. 3: The five signals after normalization.

2) Butterworth bandpass filter: The data is filtered using
a digital Butterworth bandpass filter. The abdomen signals
(and to a lesser extent the thorax signals) have a moving
baseline, which throws off many machine learning algorithms.
In addition, all the signals have high-frequency components
that don’t contribute meaningfully to the overall shape of the
ECG. The bandpass filter reduces these unwanted high and
low-frequency components.

The cutoff frequencies were experimentally determined at
20 rad/s for the low cutoff and 80 rad/s for the high cutoff.
These frequency ranges were selected based on findings in
[4], where the optimal ranges were determined between ≈
3Hz − 14Hz (20− 90rad/s). We then fine tuned our filter
parameters to achieve the desired results. A 6th-order filter
was used. Applying the filter to the inputs yields smoother
signals without a moving baseline (see Figure 4).
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Fig. 4: The signals after applying the bandpass filter specified
in Section II-B2.

3) Signal envelope: Next, the analytic signal is computed
for each signal using the Hilbert transform (see Figure 5). For
the case of periodic heartbeats, this essentially computes the
envelope around each signal. This aids the peak detection in
a later stage.
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Fig. 5: The analytic signal for each signal.

C. Linear Regression
In the envelope of the filtered abdomen signal the child

heartbeat is visible, which can be recognized as the double
green peak at about 0.1s, 0.4s and 0.8s in Figure 5. However
the amplitude is still smaller than that of the mother heartbeat.
In order to isolate the child heartbeats we first need to remove
the mother heartbeat from the abdomen signal as well as
possible.

We know that the mother heartbeat originates in the heart
and is transmitted to both the thorax electrode and the ab-
domen electrode. Both these transmissions are not instanta-
neous and may occur through multiple paths, so any impulse
at the signal source becomes spread out in time in the electrode
signals. This means that the information about the mother
heartbeat contribution in the abdomen signal at time t is
contained in some window about t in the thorax signal.

A comparison of these signals (see figure 5) shows that the
mother heartbeat signal is very similar in both. Therefore it
is reasonable to attempt to use a windowed linear regression
to predict the mother heartbeat in the abdomen signal from
the thorax signal. We found that this approach worked well
enough for our purposes. The method is outlined below.
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We wish to construct a signal a′(t) as similar as possible
to the abdomen signal a(t) from the thorax signal θ(t). If the
windows size is 2N + 1, let θi ∈ R2N+1 be a part of the
thorax signal centered on sample i, such that.

θi = [θ(i−N) . . . θ(i) . . . θ(N)] ′ (1)

Then our estimation of the abdomen signal is determined by
a weight vector w ∈ R2N+1 according to a′i = w ·θi [7]. We
want to choose the weight vector that minimizes the squared
error between the reconstructed abdomen signal and the real
abdomen signal.

w = argminw∗

tmax∑
i=1

‖a′i − ai‖
2 (2)

This is a regression problem that we can solve with the
least squares approach. If we let X = [θ1 . . .θtmax

]
′ and Y =

[a(1) . . . a(tmax)]
′ the solution to this optimization problem is

given by

w = (X ′X + α2I(2N+1)×(2N+1))−1X ′y (3)

where the parameter α is used to regularize the solution by
penalizing large values for the components of w [7]. One way
to see why such regularization might improve the result is
that it reduces the sensitivity of a′ to noise in θ. For given i
each component of w picks out a single sample of θ. This is
problematic if there is noise in the thorax signal in addition to
the heartbeat signal (which is true in reality). In that case large
components in w tend to transmit the noise from the thorax
to a′, whereas more evenly distributed components tend to
smooth the noise over a section over the window.

We used such a regression with N = 250 on the Hilbert
envelopes of one of the thorax signals and one of the abdomen
signal. The result shown in figure 6. The reconstructed signal
a′(t) closely follows the contribution of the mother heartbeats
to a(t) but not that of the child heartbeats. Therefore the
difference a(t)− a′(t) can be used to detect child heatbeats.

We also attempted to apply the linear regression without
first calculating the signal envelope, but this worked much
less well.

D. Heartbeat detection

The reconstructed abdomen envelope for the child heartbeat
a(t)− a′(t) can be used to determine at which timesteps the
child heart beat is present. This follows the steps outlined
in algorithm 2. First a windowed max-filter is applied to
the envelope, then a windowed min-filter is applied to the
result. This yields a signal with clear peaks at the child
heartbeat locations. Each of these peaks is interpreted as a
single heartbeat (see Figure 7). This process detects child
heartbeats at roughly twice the frequency of the mother’s
heartbeat, suggesting that it detects the heartbeats correctly.

This process is used because the reconstructed envelope
has several possible peaks for each heartbeat (see Figure 6).
By first filtering the signal, only one peak remains for each
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Fig. 6: The original abdomen and thorax signals and the
predicted mother component in the abdomen signal.

Algorithm 2: The heartbeat detection algorithm.
input : The predicted child heartbeat envelope
output: The locations at which beats are detected
filtered = max filter(envelope);
filtered = min filter(filtered);
beat locations = peak indices(filtered);

Fig. 7: The child heartbeat envelope with the output of the min-
and max-filters. The vertical lines indicate detected beats.

heartbeat. The window size is an important parameter here:
if it is too large, the filter will combine several heartbeats
into one. Conversely, it can yield too many peaks when the
window size is too small. The window size was experimentally
determined at 0.2s (or 200 samples).

E. Extracting the child ECG signal

Now that the locations of of the child heartbeats are known,
the child ECG signal can be extracted using the algorithm
described in Algorithm 3. The procedure outlined in Sections
II-B and II-C is repeated, with exception of the step where the
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Fig. 8: The mean child heartbeat in red, with all predicted
child heartbeats (thin dashed lines).

signals are changed into their envelope. This yields the pre-
dicted mother component of the abdomen ECG. We subtract
this mother component from the abdomen ECG to obtain the
child ECG.

Using the heartbeat locations detected, we can slice up the
child ECG. For each heartbeat, we take a window of 500
samples (or 0.5s) around it. Each of these windows constitutes
a single heartbeat. When plotted together, a clear pattern forms
(see Figure 8). Taking the mean of each window yields a
recognizable hearbeat shape (see Figure 8).

Algorithm 3: The heartbeat extraction algorithm.
input : The original data, the locations at which beats

are detected
output: The child’s ECG signal, sliced up per

heartbeat
data = preprocess(data);
mother heartbeat = linear regression(data);
child heartbeat = data - mother heartbeat;
for each detected location do

window = window of size 500 around location;
slices.add(child heartbeat[window]);

end

III. DISCUSSION

As hypothesized in the introduction, we managed to get the
predicted fetus’ heartbeats and the average of it. As mentioned
before, there is no way to check whether the predicted child
heartbeat is exactly the same as the supposedly real heartbeat
but the structure of itself looks decent.

In this project we not only have learnt how to do a ML
project but also learnt about the healthcare sector. It has shown
us that ML can be applied in so many fields, not only helping
human tasks but also improving or speeding up processes.
This may mean a faster detection of anomalies, or a better
detection, or both.

One approach we tried early on was Independent Com-
ponent Analysis. This method attempts to separate several

sources from a mixed signal. After attempting to tune this
method so it fits our problem, we discarded it in favor of the
more straightforward linear regression.

Preprocessing the data in a proper way is key in order to
have a good performance in any ML algorithm. We found
that our results were very dependent on the preprocessing
steps used, and not just the machine learning algorithm. In
the end, the machine learning algorithm used was a simple
ridge regression – with the pre- and postprocessing steps doing
much of the work.

A. Improving the results

A desired approach for improving or validating our results
would be from obtaining a fECG reading from one of the
invasive fetal scalp electrodes. This could be used to verify
our findings of what we believe to be the QRS complex in
Figure 8. However, given the lack of detail and ground truth
we cannot verify the presence of this. Another issue with our
method is the inability to clearly determine the existence of the
P or T peaks. An FSE measurement would provide our method
with a quantitative measure for comparison and enable us to
properly evaluate success.
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